
GPU Computing for

Computational Science

Jonathan Cohen

Senior Research Scientist

NVIDIA Research

Super Computing 2010 – New Orleans

State of Computational Science

Legacy codes in wide use

Computational science community is cautiously exploring GPUs

Major issue: How to handle legacy code?

Accelerate? Rewrite?

Is it worth it? (lots of ink spilled about this…)

Wildcard: What about radically different approaches?

Super Computing 2010 – New Orleans

Conceptual Roadmap

Option 1: Accelerate

Option 2: Rewrite

Option 3: Rethink

“But my code already runs on dual core. Why can’t I

just recompile?”

Super Computing 2010 – New Orleans

Why a GPU isn’t just a CPU with 100x more cores

Super Computing 2010 – New Orleans

How do you measure speed?

 “How fast can you do one thing?”

 (latency)

 vs.

 “How much can you do per second?”

 (throughput)

Super Computing 2010 – New Orleans

Throughput = Parallelism

Latency: sip through a really big straw

Throughput: Use 100 small straws

Super Computing 2010 – New Orleans

Multicore CPU: Run ~10 Threads Fast

Few processors, each supporting 1–2 hardware threads

On-chip memory/cache near processors

Shared global memory space (external DRAM)

Processor Memory Processor Memory

Global Memory

Super Computing 2010 – New Orleans

Manycore GPU: Run ~10,000 Threads Fast

Hundreds of processors, each supporting hundreds of hardware threads

On-chip memory/cache near processors

Shared global memory space (external DRAM)

Processor Memory

Global Memory

Processor Memory Processor Memory

• • • • • •

Super Computing 2010 – New Orleans

NVIDIA “Fermi” Parallel Computing

Architecture

Designed for throughput

Up to 512 Cores

Singe Precision: >1 TFLOPS

Double Precision: ~0.5 TFLOPS

Register File

Scheduler

Dispatch

Scheduler

Dispatch

Load/Store Units x 16

Special Func Units x 4

Interconnect Network

64K Configurable

Cache/Shared Mem

Uniform Cache

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Instruction Cache

Super Computing 2010 – New Orleans

Tesla C2050 + Nehalem

Rmax = 410 GFLOPS

Super Computing 2010 – New Orleans

What Computational Science Breakthroughs

Happened in 2003?

Universe of protein structures mapped

Discovery that 80% of tropopause height increase due to human

activity – global warming “fingerprint”

First comprehensive analysis of Y chromosome

Analysis of WMAP data establishes age of universe, curvature,

Hubble’s constant

High resolution simulations of 1994 Northridge Quake

Human Genome Project published first complete version

This was not the stone ages!

Super Computing 2010 – New Orleans

What does this mean for computational science?

Super Computing 2010 – New Orleans

Option 1: Accelerate

Case Study: FEAST from TU Dortmund

 Finite Element Analysis and Solution Tools

 Complex FE code for CFD and Structural Mechanics

Dominik Göddeke et al. accelerated using GPUs

FEAST-GPU Approach: High level of abstraction

Minimally invasive co-processor integration

Identify and isolate "accelerable" parts of a computation

Chunks must be large enough to amortize co-processor drawbacks (PCIE,

change of data layout, etc.)

 Portions of this slide courtesy Dominik Göddeke

Super Computing 2010 – New Orleans

FEAST-GPU Design Philosophy

FEAST-GPU Goal:

Integrate several co-processors

into existing large-scale software

package...

...without modifying application

code

NOT mapping single application to

GPU / GPU Cluster

Balance acceleration potential and

acceleration effort

Portions of this slide courtesy Dominik Göddeke

Super Computing 2010 – New Orleans

Opteron 2214, 4 nodes

GeForce 8800 GTX

CUDA backend

18.8 M DOF

Accel. fraction Racc: 75%
Local speedup Slocal: 11.5x
Theoretical limit Smax: 4x
Global speedup Stotal: 3.8x

FEAST-GPU Integration Results

Portions of this slide courtesy Dominik Göddeke

Super Computing 2010 – New Orleans

Option 2: Rewrite

If you were to attempt a rewrite:

Good overall design?

What data structures / algorithms to use?

Is it worth the effort – does 10x improvement on bottlenecks translate into

10x improvement for entire system?

Major Take-away: Avoid All Serial Bottlenecks

In particular: Avoid All PCIE Transfers

 => Move Everything to GPU

Super Computing 2010 – New Orleans

Rayleigh-Bénard Benchmark

“OpenCurrent”: 2nd order Finite Volume Cartesian fp64 CUDA code -

entire code runs on GPU

Transition from stratified (top) to turbulent (bottom)

Validated / benchmarked non-linear problems against published

results & existing Fortran code

HOT

COLD

CIRCULATING

CELLS

INITIAL

TEMPERATURE

Super Computing 2010 – New Orleans

Benchmark Methodology

Fortran code

Written by Jeroen Molemaker @ UCLA

8 Threads (via MPI and OpenMP) on 8-core 2.5 GHz Xeon

Several oceanography pubs using this code, ~10 years of code

optimizations. Code is small & fast.

Per-step calculation time varies due to convergence rate of

pressure solver

Record time once # of v-cycles stabilizes

Point relaxer on GPU – 1 FMG + 7 v-cycles

Line relaxer on CPU – 1 FMG + 13 v-cycles

See Cohen & Molemaker, ParCFD 2009

Super Computing 2010 – New Orleans

Benchmark Results – early 2009

CUDA (1 Tesla C1060) vs. Fortran (8-core 2.5 GHz Xeon)

As “apples-to-apples” as possible ($ and manpower)

 Equal price nodes (in 2009: ~$3k)

 Skilled programmers in each paradigm

Resolution CUDA time/step Fortran time/step Speedup

64 x 64 x 32 24 ms 47 ms 2.0x

128 x 128 x 64 79 ms 327 ms 4.1x

256 x 256 x 128 498 ms 4070 ms 8.2x

384 x 384 x 192 1616 ms 13670 ms 8.5x

Super Computing 2010 – New Orleans

Pair forces

•Lennard Jones

•Gaussian

•CGCMM

•Morse

•Table (arbitrary)

•Yukawa

Bond forces

•harmonic

•FENE

Angle forces

•harmonic

•CGCMM

Dihedral/Improper forces

•harmonic

Integration

•NVT (Nosé-Hoover)

•NPT

•Langevin Dynamics

•NVE

Many-body forces

•EAM (coming soon)

Simulation types

•2D and 3D

•Replica exchange

Hardware support

•All recent NVIDIA GPUs

•Multi-core CPUs via OpenMP

Snapshot formats

•MOL2

•DCD

•PDB

•XML

MD Code from Joshua Anderson et al.

Designed to run on GPU(s) or CPU(s)

Portions of this slide courtesy Joshua Anderson

Super Computing 2010 – New Orleans

HOOMD-blue Benchmark

64,000 particle Lennard-Jones fluid simulation

representative of typical performance gains

*CPU: Intel Xeon E5540 @ 2.53GHz

Portions of this slide courtesy Joshua Anderson Portions of this slide courtesy Joshua Anderson

Super Computing 2010 – New Orleans

Option 3: Rethink the Numerics

Numerical methods + programming languages + compilers +

architectures + programming paradigms = co-evolution

Popular methods are easy to express in popular languages, run well on

popular hardware

Not a coincidence!

New architectures = opportunity for new numerics

We overlooked approaches because they were impractical …

maybe no longer true

Paradigm shifts upend conventional wisdom

Super Computing 2010 – New Orleans

Example:

Nodal Discontinuous Galerkin Methods

Work from Tim Warburton & Andreas Klöckner et al. @ Brown & Rice

Solve conservation laws over unstructured grids

 ut +

∙F(u) = 0

DG on GPUs: Why?

GPUs have deep memory hierarchy

The majority of DG is local (matrix structure)

Compute Bandwidth >> Memory Bandwidth

DG is arithmetically intense.

Adopt “FLOPS are free” philosophy

Portions of this slide courtesy Andreas Klöckner

Super Computing 2010 – New Orleans

Early DG Results

Nvidia GTX280 vs. single core of Intel E8400 - Maxwell’s Equations

Portions of this slide courtesy Andreas Klöckner

Super Computing 2010 – New Orleans

J
x

r

x

s
 appears in inner products: u,v

T
u(r, s)v(r, s)J(r, s)dr ds

T̂

FEM Mesh
Curvilinear

Mesh Piecewise polynomial determinant

of the Jacobian plotted vertically

Curvilinear DG: Needs Jacobians

Portions of this slide courtesy Tim Warburton

Super Computing 2010 – New Orleans

Mass Matrices

(Not templated

~100x100x5000)

Mass Matrices

(Not templated

~100x100x5000)

Mass Matrices

(Not templated

~100x100x5000)

Mass Matrices

(Not templated

~100x100x5000)

Mass Matrices

(Not templated

~100x100x5000)

Mass Matrices

(Not templated

~100x100x5000)

Mass Matrices

(Not templated

~100x100x5000)

Mass Matrices

(Not templated

~100x100x5000)

Mass Matrices

(Not templated

~100x100x5000)

Mass Matrices

(Not templated

~100x100x5000)

Mass Matrices

(Not templated

~100x100x5000)

Mass Matrices

(Not templated

~100x100x5000)

Each curved element requires its own mass matrix (lots of memory)

Compute on the fly on GPU since FLOPS are free

Geometric Factors (Fixed data)

Mass Matrices

(Not templated

~100x100x5000)

Mass Matrices

(Not templated

~100x100x5000)

Mass Matrices

(Not templated

~100x100x5000)

Mass Matrices

(Not templated

~100x100x5000)

Mass Matrices

(Not templated

~100x100x5000)

Inverse

Mass Matrices

Not templated

Np x Np x Kcurved

Derivative Matrices

Templated

Np x Nc x3

Time Dependent

Magnetic and Electric Field Components
Time Dependent

Magnetic and Electric Field Components
Time Dependent

Magnetic and Electric Field Components
Time Dependent

Magnetic and Electric Field Components
Time Dependent

Magnetic and Electric Field Components

Time Dependent

Magnetic and Electric Field Components

Data

Nc x K x 6

 Curvilinear DG Matrix Structures

Portions of this slide courtesy Tim Warburton

Super Computing 2010 – New Orleans

Paneled Curvilinear

Maxwell Equation Solution with Curvilinear DG

Portions of this slide courtesy Tim Warburton

Super Computing 2010 – New Orleans

Accelerate, Rewrite, or Rethink?

Accelerate Legacy Codes

Use CUBLAS / CUFFT / thrust / matlab / cusp / PGI-Accelerator / etc.

 => good work for domain scientists (minimal computer science required)

Rewrite New Codes

Opportunity for clever algorithmic thinking

 => good work for computer scientists (minimal domain knowledge required)

Rethink Numerical Methods

Potential to transform science

 => Interdisciplinary: requires CS and domain insight

 => Exciting time to be a computational scientist!

Super Computing 2010 – New Orleans

Thanks

Andreas Klöckner

Tim Warburton

Dominik Göddeke

Joshua Anderson

