Y AN
LA)
...:;:.......
AL L
) Z........\:...
!) s
e de eSS0 ,
I :

_-
.
_:
..;.‘
e
A

Lr
AN
AN
e L)]
. .\.-
r
(A
A0
N 5
ey
e

Fars
s
A o
AR
SRR
e r

SIS
\-\\‘-‘.‘..‘ ¢
JIIII N0
s- .‘s-‘-‘b " -_4 p
cees 49 $ A3
KRS LSRR
IIIIIIIIIIIS
A
S AT ID A IIIN

)
;

t

IS

t

en

I Lre Ly
,‘\l:f\:.::

Research Sc
NVIDIA Research

Comp

lor

GPU
Computationa

Sen

State of Computational Science <3

NVIDIA

Legacy codes in wide use

Computational science community is cautiously exploring GPUs

Major issue: How to handle legacy code?
® Accelerate? Rewrite?
® Is it worth it? (lots of ink spilled about this...)

Wildcard: What about radically different approaches?

Super Computing 2010 — New Orleans

Conceptual Roadmap <3

NVIDIA

®* Option 1: Accelerate
ntion 2: Rewrite
* Option 3: Rethink

O

)

“But my code already runs on dual core. Why can’t |
just recompile?”

<

NVIDIA.

Why a GPU isn’t just a CPU with 100x more cores

How do you measure speed? >

NVIDIA

“How fast can you do one thing?”
(latency)

VS.

“How much can you do per second?”
(throughput)

Super Computing 2010 — New Orleans

Throughput = Parallelism <3

NVIDIA

Latency: sip through areally big straw

Throughput: Use 100 small straws

Super Computing 2010 — New Orleans

Multicore CPU: Run ~10 Threads Fast <3

NVIDIA

® Few processors, each supporting 1-2 hardware threads
® On-chip memory/cache near processors

® Shared global memory space (external DRAM)

Super Computing 2010 — New Orleans

Manycore GPU: Run ~10,000 Threads Fast >

NVIDIA

N

® Hundreds of processors, each supporting hundreds of hardware threads
® On-chip memory/cache near processors

® Shared global memory space (external DRAM)

Super Computing 2010 — New Orleans

<3

NVIDIA.

NVIDIA “Fermi” Parallel Computing
Architecture

® Designed for throughput

(®
IID

¢ Upto 512 Cores

®

l® 0) (@ 0 (@ O (
=) O) [= =) [= [= [= L
= = = S == = = ~
D [p () () (¢ D @ @ 7,

=

® Singe Precision: >1 TFLOPS
® Double Precision: ~0.5 TFLOPS

IIIII

@ @ @ (@ @ (@ (@ (@
O o O (o O (o O O
= = = = = = =

D D D D @D ® @D (¢

=

o o o O Q @ O @ B
o O [e [e [[]
= = = = = = = = =
(D D D D D D D D (D
o lo lo |loa @ o |lo o
[(e o [[e [[
= = =i = =i = = =
D > > ; > ; ; ;

Load/Store Units x 16
Special Func Units x 4
connect Network

Super Computing 2010 — New Orleans

Performance Development

100PFlops 5241940 TF

28 = #1
m
10 PFlops - g a- #3500
p8® 1759.00TF & Sum
1 PFlops @-a-o
; soaa

100 TFlops

24670 GF
o

= ‘ oo
10 TFlops B s Ll o

-
£
=
:

100 GFlops g

10 GFlops -

Tesla C2050 +|Nehalem
Rmax = 410 GFLOPS

1 L)

1 GFlops 1
(11}

100 MFlops T

| Vs L

]
-
o
L
oJ

http://'www top500.0org/

What Computational Science Breakthroughs rf,%A
Happened in 20037

* Universe of protein structures mapped

® Discovery that 80% of tropopause height increase due to human
activity — global warming “fingerprint”
* First comprehensive analysis of Y chromosome

Analysis of WMAP data establishes age of universe, curvature,
Hubble’s constant

High resolution simulations of 1994 Northridge Quake
* Human Genome Project published first complete version

»

-

This was not the stone ages!

Super Computing 2010 — New Orleans

<

NVIDIA.

What does this mean for computational science?

Super Computing 2010 — New Orleans

Option 1: Accelerate rf,%\

Case Study: FEAST from TU Dortmund

Finite Element Analysis and Solution Tools
Complex FE code for CFD and Structural Mechanics

Dominik GOoddeke et al. accelerated using GPUs

FEAST-GPU Approach: High level of abstraction
Minimally invasive co-processor integration
Identify and isolate "accelerable" parts of a computation

Chunks must be large enough to amortize co-processor drawbacks (PCIE,
change of data layout, etc.)

Super Computing 2010 — New Orleans Portions of this slide courtesy Dominik Goddeke

FEAST-GPU Design Philosophy

FEAST-GPU Goal:

® Integrate several co-processors

Into existing large-scale software lv

package...

»

code

)

GPU / GPU Cluster

Balance acceleration potential and

acceleration effort

Super Computing 2010 — New Orleans

...without modifying application

NOT mapping single application to

Generalised
MG/DD
Salver

Portions of this slide courtesy Dominik Goddeke

GPU Backend
CUDA f OpenGL)

Heterogeneous Hardware Resources

User
Application
Code

Smoother

—__Interface __

Task + Data
Scheduling

Local Coproc
Smoother
(MG)

— -

<3

NVIDIA

Local CPU
Smoother
(MG)

Cell ...
Backends
(in progress)

FEAST-GPU Integration Results <3

NVIDIA

Opteron 2214, 4 nodes
GeForce 8800 GTX
CUDA backend

18.8 M DOF fixed point iteration

solving linearised subproblems with
global BiCGStab (reduce initial residual by 1 digit)
Block-Schurcomplement preconditioner
1) approx. solve for velocities with

- global MG (V 1+40), additively smoothed by
ACCGI. fractlon RaCC: 75% for all £2;: solve for u; with
local MG
Local speedup S,.,: 11.5x —
Theoretical limit S,.: 4x local MG |
2) update RHS: d3 = —d3 + BT (c1.c2)T
Global speedup S, 3.8X 3) scale s = (M})*ds

Super Computing 2010 — New Orleans Portions of this slide courtesy Dominik Goddeke

Option 2: Rewrite <X

NVIDIA

* If you were to attempt a rewrite:
® Good overall design?
* What data structures / algorithms to use?

® Is it worth the effort — does 10x improvement on bottlenecks translate into
10x improvement for entire system?

® Major Take-away: Avoid All Serial Bottlenecks

® In particular: Avoid All PCIE Transfers
=> Move Everything to GPU

Super Computing 2010 — New Orleans

Rayleigh-Bénard Benchmark <3

NVIDIA
%ING

|

TEMPERATURE

® “OpenCurrent”; 2"d order Finite Volume Cartesian fp64 CUDA code -
entire code runs on GPU

® Transition from stratified (top) to turbulent (bottom)

® Validated / benchmarked non-linear problems against published
results & existing Fortran code

Super Computing 2010 — New Orleans

Benchmark Methodology <3

NVIDIA

Fortran code
Written by Jeroen Molemaker @ UCLA
8 Threads (via MPI and OpenMP) on 8-core 2.5 GHz Xeon
Several oceanography pubs using this code, ~10 years of code
optimizations. Code is small & fast.
* Per-step calculation time varies due to convergence rate of
pressure solver

* Record time once # of v-cycles stabilizes
Point relaxer on GPU -1 FMG + 7 v-cycles
Line relaxer on CPU -1 FMG + 13 v-cycles

* See Cohen & Molemaker, ParCFD 2009

Super Computing 2010 — New Orleans

Benchmark Results — early 2009

CUDA (1 Tesla C1060) vs. Fortran (8-core 2.5 GHz Xeon)
As “apples-to-apples” as possible ($ and manpower)
Equal price nodes (in 2009: ~$3k)
Skilled programmers in each paradigm

<3

NVIDIA

Resolution CUDA time/step Fortran time/step Speedup

64 X 64 x 32 24 ms 47 ms P 0)'%
128 x 128 x 64 79 ms 327 ms 4.1X
256 x 256 x 128 498 ms 4070 ms 8.2x
384 x 384 x 192 1616 ms 13670 ms 8.5x

Super Computing 2010 — New Orleans

0,044

MD Code from Joshua Anderson et al.

Integration

®*NVT (Nosé-Hoover)
*NPT

®Langevin Dynamics
*NVE

Bond forces

®harmonic

*FENE

Angle forces

®harmonic

*CGCMM
Dihedral/Improper forces
®harmonic

Simulation types
®2D and 3D
®Replica exchange

Super Computing 2010 — New Orleans

* Designed to run on GPU(s) or CPU(s)

Snapshot formats
*MOL2

*DCD

°PDB

*XML

Pair forces
®Lennard Jones
®Gaussian
*CGCMM
*Morse

®Table (arbitrary)
®*Yukawa

Many-body forces

®EAM (coming soon)

Hardware support

®All recent NVIDIA GPUs
®*Multi-core CPUs via OpenMP

Portions of this slide courtesy Joshua Anderson

<3

NVIDIA

HOOMD-blue Benchmark

» 64,000 particle Lennard-Jones fluid simulation
»representative of typical performance gains

HOOMD - GTX 480
LAMMPS - 64 CPU cores

HOOMD - GTX 280 _ 66 4x
HOOMD - Tesla S$1070@ ' '

LAMMPS - 32 CPU cores _ 43. 1x
HOOMD - 8 CPU cores| | 7. ax :
HOOMD -1 CPU corejfl 1 5:(-.

LAMMPS - 1 CPU corej 1 Ox

0O 100 200 300 400 500 600 700 800
Performance (time steps per second)

*CPU: Intel Xeon E5540 @ 2.53GHz

Super Computing 2010 — New Orleans Portions of this slide courtesy Joshua Anderson

Option 3: Rethink the Numerics <3

NVIDIA

-

Numerical methods + programming languages + compilers +
architectures + programming paradigms = co-evolution

* Popular methods are easy to express in popular languages, run well on
popular hardware

Not a coincidence!

)

New architectures = opportunity for new numerics

)

We overlooked approaches because they were impractical ...
maybe no longer true

¢ Paradigm shifts upend conventional wisdom

Super Computing 2010 — New Orleans

Example: ,f,%A
Nodal Discontinuous Galerkin Methods

Work from Tim Warburton & Andreas Klockner et al. @ Brown & Rice
Solve conservation laws over unstructured grids

u + -Fu)=0
DG on GPUs: Why?

®* GPUs have deep memory hierarchy
® The majority of DG is local (matrix structure)

¢ Compute Bandwidth >> Memory Bandwidth

* DG is arithmetically intense.
* Adopt “FLOPS are free” philosophy

Super Compuing 2010 — New Orleans Portions of this slide courtesy Andreas Kléckner

Early DG Results n(f%;

Nvidia GTX280 vs. single core of Intel E8400 - Maxwell’'s Equations

—e Speedup

o

| -
O
©
N ©
a .
o
o 0%
L o
(&)]
@
o
wn

W
-

N
o

=
o

Polynomial Order N

Super Compuing 2010 — New Orleans Portions of this slide courtesy Andreas Kléckner

>

Curvilinear DG: Needs Jacobians e
_|oX x ox appears in inner products: (¢, V). = ”u(r syW(r,s)J(r,s)drds
or Os e 7 , , ,

0.015,
0.01,

0.005,

J =1 dXdrx dXds

o "/“ "' :

-0.5

Curvilinear)

FEM Mesh Mesh Piecewise polynomial determinant

of the Jacobian plotted vertically

Super Computing 2010 — New Orleans Portions of this slide courtesy Tim Warburton

Curvilinear DG Matrix Structures <3

NVIDIA

Time Dependent

Defveiys itoes Magnetic and Electric Field Components

Templated

Np X Nc x3 DEIEN

Nc x Kx 6

Geometric Factors (Fixed data)

Each curved element requires its own mass matrix (lots of memory)
Compute on the fly on GPU since FLOPS are free

Super Computing 2010 — New Orleans Portions of this slide courtesy Tim Warburton

Maxwell Equation Solution with Curvilinear DG &

NVIDIA.

Paneled Curvilinear

Stper Computing 2010 — New Orieans Portions of this slide courtesy Tim Warburton

Accelerate, Rewrite, or Rethink? <3

NVIDIA

® Accelerate Legacy Codes
® Use CUBLAS / CUFFT / thrust / matlab / cusp / PGI-Accelerator / etc.
=> good work for domain scientists (minimal computer science required)

* Rewrite New Codes
® Opportunity for clever algorithmic thinking
=> good work for computer scientists (minimal domain knowledge required)

¢ Rethink Numerical Methods
* Potential to transform science
=> |nterdisciplinary: requires CS and domain insight
=> Exciting time to be a computational scientist!

Super Computing 2010 — New Orleans

Thanks <

NVIDIA

-

Andreas Kldckner
Tim Warburton

Dominik Goddeke
Joshua Anderson

)

-

-

Super Computing 2010 — New Orleans

